







pro konkurenceschopnost

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

| Šablona: | Inovace a zkvalitnění výuky prostřednictvím ICT                                                                    |  |
|----------|--------------------------------------------------------------------------------------------------------------------|--|
| Název:   | zev: Uživatelská nastavení parametrických modelářů, vyι<br>doplňkových modulů                                      |  |
| Téma:    | Metody konečných prvků l                                                                                           |  |
| Autor:   | Ing. Radek Šebek                                                                                                   |  |
| Číslo:   | lo: VY_32_INOVACE_18 – 08                                                                                          |  |
| Anotace: | Metoda konečných prvků, modul SolidWorks Simulation, příprava modelu, pracovní postup při tvorbě statické analýzy. |  |

Metoda konečných prvků, modul SolidWorks Simulation, příprava modelu, pracovní postup při tvorbě statické analýzy. DUM je určen pro žáky 4. ročníku oboru strojírenství. Vytvořeno: září 2013.

### Metoda konečných prvků

dále jen MKP je numerická metoda sloužící k simulaci průběhu napětí, deformace, proudění apod. na vytvořeném virtuálním modelu. Tato metoda je využívána především pro kontrolu navržených součástí či zařízení, nebo pro stanovení kritického místa konstrukce. V prostředí SolidWorksu za tímto účelem využíváme doplňkový modul "SolidWorks Simulation", ve kterém můžeme provádět několik druhů analýz, nejčastěji pak pro statické zatížení vnějšími silami. Oblast MKP je poměrně rozsáhlá a není účelem tohoto učebního materiálu postihnout všechny typy úloh a proto se zaměříme na ty nejčastěji využívané. Tedy na statické zatížení konstrukce a její případnou rozměrovou optimalizaci.

Aktivace doplňkového modulu SolidWorks Simulation – je možná přes nabídku

roletového menu "Nástroje – Doplňkové moduly".





Doplňkový modul je možné aktivovat pouze v plné nebo školní verzi SolidWorksu. Není součástí studentských licencí. **Přístup k nástrojům a prvkům analýzy** – je možný přes nabídku panelu nástrojů "Simulace" a roletového menu "Simulation". Prvky pak ovlivňujeme přímo ve stromu FeatureManageru.

| Simulace 🛛                 |
|----------------------------|
| 2 🗄 🗞 🞽 🕅 🖶 🗄 🖾            |
| Panel nástrojů "Simulace". |





**Příprava modelu** – předchází samotné analýze. Spočívá převážně v přípravě ploch, kde bude aplikováno zatížení či uchycení.



# Pracovní postup při tvorbě statické analýzy



📃 Použít 2D zjednodušení

Stejným způsobem můžeme materiál posléze i změnit.



**Krok č. 3** – pomocí místní nabídky specifikujeme uchycení konstrukce.

| Uchycení ?                | 2 |
|---------------------------|---|
| 🗸 🗙 ->=                   |   |
| Typ Rozdělení             |   |
| Příklad 🏾 🖇               | 2 |
|                           |   |
| Norma (Fixní geometrie) 🔗 |   |
| Fixní geometrie           |   |
|                           |   |
| Fixní čep                 |   |
| Plocha<1><br>Plocha<2>    |   |
| Upřesňující 🛛 🛛 🕅         | * |
| Nastavení značky 🔗        |   |
| Upravit<br>barvu          |   |
| tt 100                    | 7 |
| ▼ Zobrazit náhled         |   |





Krok č. 4 – stanovíme vnější zatížení.



U větších konstrukcí definujeme i účinek gravitace, která má na celkové zatížení v těchto případech významný vliv.







| V Zatížení silou F                         |  |  |
|--------------------------------------------|--|--|
| Řešení:                                    |  |  |
| 9.1%                                       |  |  |
| Využití paměti: 35,700K                    |  |  |
| Uplynulý čas:5s                            |  |  |
| Behem analyzy vzdy zobrazit resic          |  |  |
|                                            |  |  |
| Aktuální úloha: Iterace                    |  |  |
| 100%                                       |  |  |
| Studie                                     |  |  |
| Stupně volnosti: 108.045                   |  |  |
| Počet uzlů:36,145<br>Počet elementů:21.846 |  |  |
| Řešiř                                      |  |  |
| Typ:Iterační                               |  |  |
|                                            |  |  |
|                                            |  |  |
|                                            |  |  |
| Upozornění                                 |  |  |
| Graf konvergence Parametry řešiče          |  |  |
|                                            |  |  |
| Zastavit Storno Méně<<                     |  |  |
|                                            |  |  |
| Krok č. 6 – spustíme analýzu.              |  |  |

1

















Výsledky analýzy je možné animovat a případně exportovat k dalšímu zpracování. Při úpravě tvaru či velikosti modelu lze provádět opětovně analýzy, jen je nutné vytvořit nově síť, případně zkontrolovat uchycení a vnější zatížení.



# Metody konečných prvků I – příklad k procvičení

Vytvořte statickou analýzu modelu dle předlohy. Zjistěte průběh napětí a posuvů ve všech směrech souřadného systému.



# Použité zdroje

Pro tvorbu digitálního učebního materiálu byl použit následující software:

Microsoft Office PowerPoint 2007 SP3 MSO, Microsoft Corporation. SolidWorks 2012 SP4.0, studijní edice pro školní rok 2012-2013, Dassault Systemes. Výstřižky 6.1.7601, Microsoft Corporation.