

EVROPSKÁ UNIE

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Šablona:	Inovace a zkvalitnění výuky prostřednictvím ICT
Název:	Základy parametrického modelování
Téma:	Plechové díly II
Autor:	Ing. Radek Šebek
Číslo:	VY_32_INOVACE_16 – 18
Anotace:	Tažený lem, plechové spojení profilů, odebrání vysunutím, jednoduchá díra, narovnat, ohnout, větrací otv

vor, tvarovací nástroj, vložit ohyby, převést na plechový díl. DUM je určen pro žáky 2. ročníku oboru strojírenství.

Tažený lem – vytváří na hranách plechového dílu tvářený lem.

Plechové spojení profilů – vytvoří plechový díl plynulým přechodem dvou rozdílných profilů.

Plechový přechod čtvercového a kruhového profilu.

Odebrání vysunutím, jednoduchá díra – jsou prvky vhodné pro tvorbu členitých nebo

jednoduchých válcových či kuželových otvorů.

Narovnat a ohnout – prvky nejčastěji používáme ve vzájemné kombinaci a slouží pro práci s již vytvořenými ohyby. Zpravidla je využijeme ke tvorbě normálových odebrání v již ohnutých plechových dílech. Plechový díl s normálovým odebráním napříč ohybem.

Větrací otvor – je prvek pro pohodlné vytvoření odvětrávacího otvoru v jednom kroku.

Tvarovací nástroj – umožní vytvořit lisovaný prvek na modelu plechového dílu. Model tvarovacího nástroje přitom vytváříme jako samostatný díl.

Poté zvolíme prvek tvarovací nástroj a určíme významné plochy. Nakonec model uložíme do vhodného adresáře.

Adresář,ve kterém je model tvarovacího nástroje načteme jako složku knihovny a to volbou "Přidat umístění souborů".

Poté ji nastavíme pravým tlačítkem myši jako složku tvarovacích nástrojů.

> Nyní již vytvořený nástroj aplikujeme v modelu plechového dílu a to přetažením z knihovny návrhů na příslušné místo. Pro vhodné finální umístění použijeme kóty a vazby skici.

Vložit ohyby – je prvek, který převede tenkostěnný díl konstantní tloušťky na plechový,

Převést na plechový díl – pomocí tohoto prvku převedeme objemový díl na plechový.

Plechové díly II – příklady k procvičení

Vytvořte modely plechových dílů dle předlohy (rozměry volte):

Použité zdroje

Pro tvorbu digitálního učebního materiálu byl použit následující software:

Microsoft Office PowerPoint 2007 SP3 MSO, Microsoft Corporation. SolidWorks 2012 SP4.0, studijní edice pro školní rok 2012-2013, Dassault Systemes. Výstřižky 6.1.7601, Microsoft Corporation.